
Nonlinear s model approach for level correlations in chiral disordered systems

Kazutaka Takahashi*
Theoretische Physik III, Ruhr-Universität Bochum, 44780 Bochum, Germany

(Received 10 March 2004; revised manuscript received 11 October 2004; published 30 December 2004)

We study level correlations of disordered systems with chiral unitary symmetry(AIII symmetry). We use a
random matrix model with a finite correlation length to derive a supersymmetric nonlinears model. The result
is compared with existing results based on other models. Using the methods of Kravtsov and Mirlin(Pis’ma
Zh. Fksp. Teor. Fiz.60, 645(1994) [Sov. Phys. JETP60, 656(1994)]) and Andreev and Altshuler[Phys. Rev.
Lett. 75, 902 (1995)], we calculate the density of states and two-level correlation function. The result is
expressed using the spectral determinant as in traditional nonchiral systems. We discuss the renormalization of
the mean level spacing which is not present in the traditional systems.
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I. INTRODUCTION

The classification of disordered systems is based on sym-
metries of the Hamiltonian. According to invariance proper-
ties under time-reversal and spin rotation, three symmetry
classes—unitary, orthogonal, and symplectic—are well
known since the work by Wigner and Dyson[1]. The modern
classification is based on the notion of symmetric spaces[2]
and indicates that ten universality classes exist. Although
there was an early effort at a universality classification in the
1980s[3], the additional seven classes did not attract much
attention until physical applications were found[4,5]. The
importance of chiral symmetry in disordered systems was
first noticed in Ref.[4] by using random matrix theory
(RMT) in the context of quantum chromodynamics(QCD)
and mesoscopic quantum wires. In systems with chiral sym-
metry, eigenvalues of the Hamiltonian appear in pairs ±e and
the origine=0 plays a special role for level correlations.

In order to analyze such systems, the supersymmetry
method[6] is known to be a useful tool for both perturbative
and nonperturbative calculations. This method allows one to
obtain a nonlinears model with supermatrix fields as effec-
tive modes. One can discuss weak localization effects using
perturbation theory, where an expansion in terms of diffusion
propagators(29) is performed. A diagrammatical interpreta-
tion is thus possible, and weak localization implies a large
conductanceg@1, whereg is proportional to the diffusion
constant in the propagator. The localization property can also
be discussed using the renormalization group method. This
expansion is justified only for nonzero modesqÞ0 in the
propagator. The zero-mode sector contains a totally different
contribution and gives the ergodic resultg=`. Using the
zero mode, we can calculate level correlation functions
scaled in terms of the mean level spacing[6]. The result is
nonperturbative, parameter-free, and universal. We know that
treating the zero mode perturbatively gives only the
asymptotic form of the exact result.

Thus it is important to notice the different roles of the
zero and nonzero modes. At finiteg, the nonzero modes

modify the universal result of level correlation functions
[7–9]. Kravtsov and Mirlin(KM ) treated the zero and non-
zero modes separately and found finite-g corrections to the
universal result[8]. Due to technical problems, the result was
restricted to the domainz!g wherez is the scaled energy
variable. Using another method, Andreev and Altshuler(AA )
considered the domainz@1 where the perturbative expan-
sion makes sense[9]. They reached the nonperturbative re-
gime by noticing the existence of a set of nontrivial saddle
points. Considering the expansion around two saddle points
the result was expressed using the determinant of the diffu-
sion propagator, which is called the spectral determinant in
the literature. Although their method did not treat the zero
and nonzero modes separately, it was shown in Ref.[10] that
the separation, just as in KM’s method, gives the same result.

Using the derived result, the authors in Ref.[9] found a
smearing of the singularity at the Heisenberg time in the
form factor (the Fourier transform of the two-level correla-
tion function). Furthermore, the use of the spectral determi-
nant represents a link from disordered to chaotic systems.
The authors in Ref.[11] noticed that a similar treatment can
be applied to general chaotic systems just by replacing the
diffusion operator in the spectral determinant by the Perron-
Frobenius operator. For a chaotic system, the expression of
the determinant using the trace formula was discussed in
Ref. [12]. Thus the expression using the spectral determinant
is important for a unified treatment of disordered and chaotic
systems. The result was applied to critical statistics[13] and
the relation to the density-density correlation in the
Calogero-Sutherland model at finite temperature was
discussed.

In this paper we consider systems with chiral unitary sym-
metry. Starting from a chiral random matrix model with a
finite correlation length, we derive a nonlinears model and
calculate the density of states(DOS) and two-level correla-
tion function(TLCF). Our aim in this paper is not to discuss
a specific model but to discuss the generic properties of chi-
ral symmetric systems. Actually thes model we use in this
paper is believed to be applicable to a broad range of physi-
cal systems and we discuss the relation to others models for
specific systems. Then, we calculate the DOS and TLCF us-
ing a nonperturbative method which is equivalent to both
methods of KM and AA. Our method is similar to that in*Present address: RIKEN, Wako, Saitama 351-0198, Japan.
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Ref. [10] and the zero and nonzero modes are separated ex-
plicitly. For chiral symmetric systems, the calculation using
the KM method has been carried out in Ref.[14]. In contrast
to the approach in Refs.[8,14], we integrate the zero mode
first, and then treat the nonzero modes perturbatively. The
advantage of this method is that all domains are treated in a
unified way. We also discuss the effect of the DOS renormal-
ization, which is specific for nonstandard symmetry systems.
We restrict our discussion to chiral unitary symmetry(AIII
symmetry) and the extentions to other chiral symmetric
classes, chiral orthogonal(BDI) and chiral symplectic(CII),
will be discussed elsewhere.

The organization of this paper is as follows. In Sec. II,
starting from the random Hamiltonian, we derive the super-
symmetric nonlinears model. It differs from the traditional
s model written in terms of a supermatrixQ by symmetries
of the matrix and the presence of an additional term. We
discuss relations to other models. Next, the DOS and TLCF
are calculated in Sec. III. In Sec. IV, we discuss the effect of
the additional term and the DOS renormalization. Section V
is devoted to discussion and conclusions.

II. SUPERSYMMETRIC NONLINEAR s MODEL

A. Derivation

In this paper we treat the Hamiltonian in the form

H = S 0 W

W† 0
D , s1d

whereW is an arbitrary matrix. This Hamiltonian possesses
chiral symmetry, which means that the eigenvalues appear in
pairs ±ei. The matrix W can be a rectangular matrixsn
3md as well as a square onesn=md. n= un−mu is the topo-
logical number and is equal to the number of zero eigenval-
ues of the Hamiltonian. Here we considern=0 and the ex-
tension to a finiten will be discussed elsewhere. Making a
unitary transformation, we have

H = SV1 V2

V2 − V1
D . s2d

V1,2 aren3n Hermitian matrices. Treating these matrices as
random ones, we can obtain the original chiral RMT[4]. Due
to the chiral structure of the Hamiltonian, two random ma-
trices couple in the single Hamiltonian and nontrivial corre-
lations of the single Green function are expected. We restrict
our discussion to the chiral unitary ensemble, which means
V1,2 are arbitrary Hermitian matrices.

We consider a system written in field theoretical form as

H =E
xy

c†sxdHsx,ydcsyd, s3d

where c is the fermionic field operator andex=eddx. The
random HamiltonianHsx,yd has the chiral structure(2) and

V1,2sx,yd = v1,2sx,ydasux − yud. s4d

v1,2 are random matrices and are averaged using the Gauss-
ian integral

k¯l =E Dv1,2s¯dexpF−
1

l2E
xy

fv1sx,ydv1sy,xd

+ v2sx,ydv2sy,xdgG , s5d

wherel is a free parameter. The functionasrd represents a
finite correlation of the Hamiltonian. We assume the range of
the correlation, denoted byr0, is large so that the saddle
point approximation is applicable in the following calcula-
tion. In the limit r ! r0, asrd,1 and we have the fully
Gaussian correlation. In the opposite limitr @ r0, we assume
the correlation decays fast enough, e.g.,asrd,exps−ur u / r0d.

This finite-range model is more realistic than chiral RMT
in which all the matrix elements correlate with each other in
the same way. The finite-range effect can be realized as a
weak localization correction and a new energy scaleEc
=D /L2 (Thouless energy), whereD is the diffusion constant
and L the system length, comes into the analysis. Another
interesting situation is when the decay of the matrix is power
law. For a certain range of parameters this model reproduces
the physics of the Anderson transition[15]. Extensions of the
present work to the power-law case are discussed in
Ref. [16].

We mention related work[17–21] in which similar non-
linear s models were considered for systems with chiral
symmetry. Our model is a simple generalization of models
used in[17,20]. In other works, the random flux model[18],
the random gauge field model[21], and the partially
quenched chiral perturbation theory as the low-energy model
of QCD [19] were considered. The derived nonlinears mod-
els differ from the standard diffusion model for nonchiral
systems by symmetries of the matrix. Furthermore, an addi-
tional term was found in Refs.[17–19] although it was not
found in Refs.[20,21]. Here we rederive thes model and
discuss relations to these models. In fact the additional term
can exist and can be derived by a careful treatment of the
massive mode integration. Although these models are differ-
ent, we expect common low-energy properties. Our goal is to
investigate them in the framework of the nonlinears model.

Let us derive the nonlinears model using the supersym-
metry method. Our derivation is similar to that in Refs.
[15,22]. We first define the generating function for the single
Green function. Following Efetov’s notation and conventions

[6], we define it asZ1fJg=eDsc ,c̄dexps−Ld, with

L = − iE
xy

c̄sxdfe+dsx − yd − Hsx,yd + kJsxddsx − ydgcsyd,

s6d

where k=diags1,−1d operates in superspace,c is a four-

component supervector, andc̄=c†. The source fieldJ is a
232 matrix in chiral space. We take the ensemble averaging
to obtain
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L = −
1

4
E

xy

Asx,ydstr r̃sxdr̃syd − iE
x

c̄sxdfe+ + kJsxdgcsxd,

s7d

whereAsx,yd=a2sx−yd, and

r̃sxd =
1
Î2

frsxd − SxrsxdSxg,

rsxd = Sz
1/2csxdc̄sxdSz

1/2. s8d

Sx,z are the Pauli matrices in chiral space. The Hubbard-
Stratonovich fieldQ is introduced in the standard way. After

integrations over c and c̄, we have kZ1fJgl=eDQ
3exps−F1fJgd with

F1fJg =
A0

2
E

xy

sA−1dsx,ydstrQsxdQsyd

− str lnse+Sz + JkSz + ilÎA0Qd, s9d

whereA0=eyAsx,yd, r0
d. Q is a 434 supermatrix and has

the same symmetry asr̃sxd, which gives the condition
hQ,Sxj=0.

We consider the saddle-point approximation. We are in-
terested in the vicinity of the origine=0 where chiral sym-
metry becomes important. At this point, the saddle-point
equation givesQ2=1 and the saddle-point manifold is ob-

tained asQ=TSzT̄ whereT̄ is the inverse ofT. Symmetries
of theT matrix were considered in Ref.[23] and the explicit
parametrization was obtained as

T = Î1 − P2 − iP, P = S0 t

t 0
D, t = Sa s

r ib
D , s10d

wherea,b are real variables ands ,r Grassmann variables.
In addition, we must take into account the massive degrees
of freedom which are not on the saddle-point manifold. Usu-
ally, in nonchiral systems, integrations of the massive de-
grees of freedom do not give any contribution. However, in
the present case, the integrations give additional contribu-
tions written in terms of the massless modes. We can write

the Q matrix asQ=TsSz+dQdT̄ wheredQ denotes the mas-
sive modes and changes the saddle point. Since theQ matrix
anticommutes withSx, the structure ofdQ in chiral space is
determined as

dQ = Sdq 0

0 − dq
D , s11d

wheredq is a 232 supermatrix. ThisQ is substituted in the
generating function and the functionalF1 is expanded in
powers ofdQ. We have

F1fJg = F1
s0dfJg + F̃1

s0d + F1
sId, s12d

where

F1
s0dfJg =

A0

2
E

xy

Rsx,ydstrQsxdQsyd +
ipe

2VD
E

x

strSzQsxd

+
ip

2VD
E

x

strJsxdkSzQsxd,

F̃1
s0d =

A0

2
E

xy

fsA−1dsx,yd + dsx − ydA0
−1gstrdQsxddQsyd,

F1
sId =

A0

2
E

xy

Rsx,ydstrh2fT̄sydQsxdTsyd − SzgdQsyd

+ TsxddQsxdT̄sxdTsyddQsydT̄syd − dQsxddQsyd + ¯ j.

s13d

Qsxd=TsxdSzT̄sxd , Rsx,yd=A−1sx,yd−dsx−ydA0
−1, and D

=plÎA0/2V (V is the system volume, and we put the lattice
constanta=1) is the inverse of the DOS(mean level spac-
ing) at e=0. F1

s0dfJg is independent of the massive modes,

F̃1
s0d is the purely massive mode, andF1

sId is the mixing term.
Using the cumulant expansion and integrations of the mas-
sive modes we obtainF1,F1

s0dfJg+kF1
sIdlF̃

1
s0d where

kF1
sIdlF̃1

s0d =
1

4
E

xy

Rsx,ydfstr T̄sydTsxdstr T̄sxdTsyd

− str T̄sydTsxdSxstr T̄sxdTsydSxg. s14d

This calculation can be systematically done by using con-
traction rules derived in Appendix A. We neglected contribu-
tions that can be considered higher-order ones. The first term
in the above equation is also neglected since the expansion
does not include second order inP [see Eq.(10)]. We obtain

F1 =
A0

2
E

xy

Rsx,ydstrQsxdQsyd

−
1

4
E

xy

Rsx,ydstr T̄sydTsxdSxstr T̄sxdTsydSx

+
ipe

2DV
E

x

strSzQsxd +
ip

2DV
E

x

strJsxdkSzQsxd.

s15d

The second term has a double-supertrace form and is not
present in nonchiral systems. The crucial point is that the
massive modes were parametrized as in Eq.(11). They have
the structure Sz in chiral space. dQ in a form dQ
=diagsdq1,dq2d would give the first term ofkF1

sIdl only,
which is the case for nonchiral systems.

Using the gradient expansion, we obtain the final form of
the s model

NONLINEAR s MODEL APPROACH FOR LEVEL… PHYSICAL REVIEW E 70, 066147(2004)

066147-3



F1 =
pD

4DV
E strs¹Qd2 −

pD1

16DV
E sstrQ ¹ QSxd2

+
ipe

2DV
E strQSz, s16d

where we neglected the source term,Qsxd=TsxdSzT̄sxd is a
434 supermatrix, and

pD

DV
=

E
r

r2a2srd

E
r

a2srd

,
pD1

DV
=

E
r

r2a2srd

FE
r

a2srdG2
. s17d

Due to the relationD=D1er a2srd,D1r0
d, the constantD1 is

smaller thanD by the factor 1/r0
d and the second term in Eq.

(16) can be neglected. However, it can be important when
the quantum effect is taken into account by the renormaliza-
tion group method. It is discussed in Sec. IV.

The generating functionZ1 is used only for a single Green
function. It is straightforward to extend the calculation to the
case of products of Green functions. The generating function
for the product of the retarded Green functionktr GsRd

3se1dtr GsRdse2dl is defined as

Z2fJg =E Dsc,c̄dexpFi E c̄sê+ − H + kJdcG , s18d

where c , c̄ are eight-component supervectors.ê
=diagse1,e2d is the matrix in “two-point” space. In chiral
symmetric systems, the identity trGsAdsed=−trGsRds−ed holds
and the generating function for the advanced Green function
can be found fromZ2. Repeating the calculation in a similar
way, we find thes model kZ2l=eDQ exps−F2d with

F2 =
pD

4DV
E strs¹Qd2 −

pD1

32DV
E fsstrQ ¹ QSxd2

+ sstrLQ ¹ QSxd2g +
ip

2DV
E str êSzQ, s19d

whereQ=TSzT̄ is an 838 supermatrix andL=diags1,−1d
in two-point space.

B. Comparison with other models

Our derived nonlinears model is equivalent to the mod-
els in Refs.[14,20] except for the presence of the double-
trace term. The reason why that term was absent in Refs.
[14,20] is that the massive mode integration was not taken
carefully.

In order to compare our result with the models in Refs.
[17,18] we use theQ-matrix parametrization

Q = Szfs1 − P2d1/2 + iPg2, P = S0 t

t 0
D , s20d

where t is a 232 supermatrix. The random flux model in
Ref. [18] is mapped onto the effective action

SRF = −
2

b
E str ¹ T −1 ¹ T −

1

c
E sstrT −1 ¹ Td2

−
2iv

b
E strsT + T −1d, s21d

whereTPGLsnund. This model is reduced to our model by
using the parametrization

T = ft + s1 + t2d1/2g2, s22d

and puttingn=1. The “flavor” degrees of freedomn repre-
sent different species of electrons and are not important for
the present problem. We note that different notation and con-
ventions are used in this expression. In contrast with our
definition of supermathematics[6], the definition in Ref.[24]
was used in Eq.(21), which explains the difference in ap-
pearance between Eqs.(16) and (21).

It is worthwhile to mention the relation of the coupling
constantsb andc. The authors in Ref.[18] found the relation
b,c/N whereN are the “color” degrees of freedom.N must
be large in order to justify the saddle-point approximation.
Thus the second term in Eq.(21) is small compared with the
first term. This is precisely what we found, and the correla-
tion length r0 corresponds toN. We also note that we ne-
glected the topological term coming from the boundary con-
dition [18]. Such a term is expected to be derived in our
model by considering a finite topological numbern, and it
will be discussed elsewhere.

In a similar way, our result is compared with Gade’s rep-
lica s model based on the sublattice models[17]

SG =
2

b
E tr ¹ sZ + Wd ¹ sZ − Wd

−
1

c
E ftrsW¹ Z − Z ¹ Wdg2 −

4iv

b
E tr W, s23d

whereZ is a matrix with some symmetry andW=s1+Z2d1/2.
The parametrization

Z = 2ts1 + t2d1/2, W= 1 + 2t2 s24d

is used to find a formal agreement with our model. We note
that Gade’s model was obtained by using the replica method
and the structure of the matrixt is different from ours. How-
ever, we show in the following that, at least in the perturba-
tive regime, both calculations give the same result. It is
known that the replica and supersymmetry methods give the
same perturbative result for the same symmetry class.

The relation of the coupling constantsb and c was not
discussed in Ref.[17]. It is not clear what is the large param-
eter in the model to justify the saddle-point approximation. It
is expected that introduction of such a parameter leads to a
similar relation just as in other calculations.

Both works[17,18] did not use theQ-matrix representa-
tion. It has been used in traditionals models and is useful for
comparison of models and for formulation of perturbative
and nonperturbative calculations as we demonstrate below. It
is also important to find gauge invariance of the model.
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III. LEVEL CORRELATION FUNCTIONS

In this section, we calculate the DOS and TLCF by using
the nonlinears models derived in the previous section. We
neglect the double-trace term contribution and putD1=0.
This is becauseD1 is smaller thanD by the factor 1/r0 at the
classical level. The effect of the double-trace term is dis-
cussed in Sec. IV.

We write down the DOS and TLCF in a functional inte-
gral form. The DOS is given by

krsedl =
1

4DV
ReE DQFE

x

strkSzQsxdGe−F1, s25d

whereF1 is given by Eq.(16) (we putD1=0) andQ is a 4
34 supermatrix. The TLCF is

krse1drse2dl =
1

4
fWse1,e2d + Wse1,− e2d + Ws− e1,e2d

+ Ws− e1,− e2dg, s26d

Wse1,e2d =
1

16D2V2 E DQFE
x

strkL1SzQsxdG
3 FE

y

strkL2SzQsydGe−F2, s27d

whereF2 is given by Eq.(19), Q is an 838 supermatrix, and
L1,2=s1±Ld /2. In the following we use the connected part
of the TLCF kkrse1drse2dll=krse1drse2dl−krse1dlkrse2dl.

A. Summary of the result

Before entering into the detailed analysis, we give an out-
line of the derivation and the result for reference. For pertur-
bation theory, theQ matrix is expanded in powers of theP
matrix:

Qsxd = Sz
1 + iP

1 − iP
= Szs1 + 2iP − 2P2 + ¯ d. s28d

Correspondingly, the result is expressed by using the expan-
sion of the diffusion propagator[6]

Psq,ed =
D

2p

1

Dq2 − ie
. s29d

The expansion parameter is 1/g where g=pEc/D
=pD /DL2 is the dimensionless conductance. It does not ap-
pear in the zero-mode sector of the propagatorsq=0d and the
expansion is not justified. Actually, treating the zero mode
exactly (nonperturbatively), and neglecting other nonzero
modes, we can obtain the ergodic result. TheQ matrix for
the zero mode is written as

Q = TSzT̄, s30d

whereT is independent of the spatial coordinate and its ex-
plicit parametrization is given in the following. In order to
incorporate the zero and nonzero modes into the analysis we
should use the parametrization

Qsxd = TQ̃sxdT̄. s31d

Q̃ parametrizes the nonzero modes and is expanded in pow-

ers of theP matrix as in Eq.(28). The zero modeQ=TSzT̄ is
treated nonperturbatively so that the ergodic result is ob-
tained. This parametrization is reminiscent of the renormal-
ization group calculation(see, e.g., Ref.[6]) and was used by
KM. They considered integrations of the nonzero modes first
and found corrections to the ergodic result. For a technical
reason the result was applicable only to the domainz!g
wherez=pe /D is the scaled energy variable. Here we con-
sider the zero-mode integration first and then integrate the
nonzero modes. This method allows us to consider the do-
mainz@1 discussed by AA. For comparison, we present the
KM method in Sec. III C.

The zero-mode model is equivalent to chiral RMT. This
ergodic limit can be obtained by puttingg=` in the above
functional integral form. The result is scaled by the mean
level spacingD to give

r1szd = Dkrse = Dz/pdl = r1
s0dszd, s32d

r2sz1,z2d = D2kkrse1 = Dz1/pdrse2 = Dz2/pdll = − K2sz1,z2d,

s33d

where

r1
s0dszd =

pz

2
fJ0

2szd + J1
2szdg,

Ksz1,z2d =
pÎz1z2

z1
2 − z2

2 fz1J1sz1dJ0sz2d − z2J0sz1dJ1sz2dg. s34d

This result does not depend on any parameter and is univer-
sal. It was obtained in Ref.[25] by using the orthogonal
polynomial method and in Ref.[23] using the supersymme-
try method.

How is it changed if we include the nonzero modes? If we
treat all the modes perturbatively, the result is expressed by
the diffusion propagator. The expansion(28) is used to give

krsedl ,
1

DF1 +
1

2
ReSo

q

Psq,edD2G , s35d

kkrse1drse2dll ,
1

2D2Reo
q

fP2
„q,se1 + e2d/2…

+ P2
„q,se1 − e2d/2…g. s36d

This expression includes the zero mode and is justified for
g@1 and z@1. The zero-mode contribution gives the
asymptotic form of the ergodic result as was shown in
Ref. [14].

Before discussing the exact treatment of the zero mode
we must mention the effect of the renormalization of the
mean level spacing. The quantityD was introduced as the
mean level spacing atg=` andz=`. For traditional symme-
try classes, it remains unchanged even if we include the non-
zero modes(finite-g effect), which is a consequence of the
particle conservation law. However, this is not the case in
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chiral systems. For finiteg, the nonzero modes contribute to
D, which means that the DOS is renormalized as was dis-
cussed in Ref.[17]. Referring to Eq.(35), we define the
renormalized mean level spacing

1

D̃
,

1

DF1 +
1

2
ReSo

qÞ0
Psq,edD2

+ ¯G . s37d

Note that the zero mode is excluded in this expression. Con-
tributions of the zero mode are totally different from those of
other modes. The nonzero modes determine the macroscopic

behavior of the DOS 1/D̃, while the zero mode determines
the universal microscopic behavior after scaling in terms

of D̃.

A naive calculation shows thatD̃ is divergent in some
cases and should be renormalized to a finite value using a
regularization. We are interested in the microscopic behavior
after the mean level spacing is scaled out. The effect of non-
zero modes in the microscopic domain is present even after
the scaling and we discuss it in the following.

We turn to the main results in this section. We use the
parametrization(31) to treat the zero and nonzero modes
separately. The zero mode is parametrized so that the ergodic
results(32) and (33) are reproduced and the nonzero modes
are treated perturbatively. The domainz!g was first consid-
ered by KM for nonchiral systems and we call it KM’s do-
main. Up to second order in 1/g, the DOS in KM’s domain
is given by

r1szd = D̃krse = D̃z/pdl , F1 +
ad

8g2S2z
d

dz
+ z2 d2

dz2DGr1
s0dszd.

s38d

ad is the momentum integration

ad =
1

8p4 o
nù0,n2Þ0

S 1

n2D2

. s39d

We used the periodic boundary condition. The TLCF is

r2sz1,z2d = D̃2kkrse1 = D̃z1/pdrse2 = D̃z2/pdll

, − HF1 +
ad

8g2Sz1
]

] z1
+ z2

]

] z2
D +

ad

8g2Sz1
]

] z1

+ z2
]

] z2
D2GKsz1,z2dJ2

. s40d

The result was scaled by the renormalized mean level spac-
ing (37). The calculation of the DOS for chiral systems has
been done in Ref.[14] but the renormalized mean level spac-
ing was not introduced. It leads to a different conclusion on
level statistics as we discuss in Secs. III C and V.

We now consider the AA domainz@1, g@1. The scaled
DOS is given by

r1szd , 1 −
cos 2z

2z
Dszd +

1

8z2 , s41d

whereDszd is the spectral determinant

Dszd = p
qù0,q2Þ0

sDq2d2

sDq2d2 + e2 = p
nù0,n2Þ0

g2s4p2n2d2

g2s4p2n2d2 + z2 .

s42d

The TLCF is

r2sz1,z2d ,
1

2
Reo

q2Þ0

sP+
2 + P−

2d

+
sin 2z1

2z1
D1Im o

q2Þ0

sP+ + P−d

+
sin 2z2

2z2
D2Im o

q2Þ0

sP+ − P−d

+
1

8z1z2
fD1D2sD+

2D−
−2 − 1dcos 2sz1 + z2d

+ D1D2sD−
2D+

−2 − 1dcos 2sz1 − z2dg

−
1

2sz1 + z2d2f1 +D1D2D+
2D−

−2cos 2sz1 + z2dg

−
1

2sz1 − z2d2f1 −D1D2D−
2D+

−2cos 2sz1 − z2dg

+
1

z1
2 − z2

2sD1sin 2z1 − D2sin 2z2d, s43d

where D1,2=Dsz1,2d , D±=D(sz1±z2d /2), and P1,2

=Psq,e1,2d , P±=P(q,se1±e2d /2). The result is expressed
using the spectral determinant as the AA result[9]. Equation
(41) can be interpreted as follows. Consider the asymptotic
form of the ergodic result(32),

r1szd , 1 −
cos 2z

2z
+

1

8z2 + ¯ . s44d

Then, including the spectral determinant in the oscillating
term, one finds Eq.(41). Equation(43) is more complicated,
but we can see that the ergodic limit gives the asymptotic
form of the exact result(33). While standard perturbation
theory gives nonoscillating terms, expansions around two
saddle points[9] are required to get oscillating terms.

We emphasize that Eqs.(38), (40), (41), and(43) are the
main results in this section. They have the following
properties.

Common domain1!z!g. The KM and AA results have
a common domain 1!z!g where the asymptotic expansion
of the Bessel function and the expansion of the spectral de-
terminant inz/g can be used. In this domain, the DOS and
TLCF are approximated as

r1szd , 1 −
cos 2z

2z
+

1

8z2 +
ad

4g2zcos 2z, s45d
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r2sz1,z2d , − Hsinsz1 − z2d
z1 − z2

−
cossz1 + z2d

z1 + z2
+

ad

8g2sz1

+ z2dcossz1 + z2d −
ad

8g2sz1 − z2dsinsz1 − z2dJ2

.

s46d

Small z. At small energies, the expansion of the Bessel
function in z is used in Eqs.(38) and (40) to give

r1szd ,
pz

2
S1 +

ad

4g2D , s47d

r2sz1,z2d , −
p2z1z2

4
S1 +

ad

2g2D . s48d

These results show that level repulsion at the origin weakens,
which is consistent with the intuitive picture.

Unitary limit. Takingz, z1+z2→`, we obtain the unitary
limit as r1szd→1 and

Rsz1,z2d = 1 +
r2sz1,z2d

r1sz1dr1sz2d
→ 1 +

1

2
Reo

q2Þ0

P−
2 −

1

2sz1 − z2d2

+
cos 2sz1 − z2d

2sz1 − z2d2 DSz1 − z2

2
D . s49d

This result is consistent with the AA result[9] for the unitary
class. We note the relationsPsq,e /2 ;gd=2Psq,e ;2gd and
Dsz/2 ;gd=Dsz;2gd. The coefficient 2 in front ofg origi-
nates from chiral symmetry. Comparing ours model (19)
with the model for unitary symmetry[6], we see the size of
the Q matrix is doubled due to chiral symmetry.

z1=z2. The relationr2sz,zd=−r1
2szd holds for arbitraryg.

It can be used to derive the DOS from the TLCF.

B. Density of states

1. Perturbative calculation

Now we go into details of the calculation of the DOS
(25). The perturbative calculation for nonzero modes is con-
sidered using the expansion of theQ matrix in P as Eq.(28).
The P matrix is parametrized for the chiral unitary class as

P = S0 t

t 0
D, t = Sa s

r ib
D , s50d

wherea, b are real variables, ands , r Grassmann ones. The
measure of this parametrization is normalized to unity. We
define the average

k¯l =E DQs¯de−F1
s0d

,

F1
s0d =

pD

DV
E

x

strs¹Pd2 −
ipe

DV
E

x

str P2, s51d

whereF1
s0d is the second order part ofF1. Performing expan-

sions inP as

krsedl ,
1

D
ReS1 −

1

2V
E

x

kstrkP2l +
1

2V
E

x

kstrkP4l + ¯D
s52d

and using the contraction rules derived in Appendix A as Eq.
(A6), we obtain the result(35).

As we emphasized in the previous subsection, this pertur-
bative calculation of the nonzero modes suggests that the

mean level spacingD̃ is renormalized as Eq.(37). The exact

definition of D̃ can be written as

1

D̃
=

1

D
E DQ̃F 1

4V
E

x

strkSzQ̃sxdGe−F1fQ̃g. s53d

Thus effect of the self-interacting diffusion bubble is renor-
malized to the mean level spacing. It corresponds to impos-

ing the constraintkQ̃lF1
=Sz. In Sec. III C we give a detailed

analysis using the KM method.

2. Ergodic limit

At the ergodic limitg→`, spatial dependence of theQ
matrix is neglected and the DOS is reduced to the form

r1szd =
1

4
E DQ strkSzQ expS−

iz

2
strSzQD . s54d

Following Ref.[23], we parametrize theQ matrix as

Q = TSzT̄, T = UT0Ū,

T0 =1 cos
û

2
− i sin

û

2

− i sin
û

2
cos

û

2
2, û = SuF 0

0 iuB
D ,

U = Su 0

0 u
D, u = expS0 j

h 0
D , s55d

where −pøuFøp and 0øuBø`. The measure is given by

DQ = duBduFdj dh
1

2p

3
coshuBcosuF − 1 − i sinhuBsinuF

scoshuB − cosuFd2 . s56d

We note that the compact(noncompact) variableuF suBd is
used for the fermion-fermion(boson-boson) block [6]. Sub-
stituting this parametrization into Eq.(54) and integrating the
Grassmann variables, we find

r1szd = 1 + ImE
z

`

dtE
0

`

duBE
0

p

duF
1

p
scoshuBcosuF − 1d

3eit+scoshuB−cosuFd = 1 −
p

2
E

z

`

dtfJ0
2std − J1

2stdg.

s57d

Here we introduced the auxiliary variablet+= t+ i0 and as-
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sumedz.0st.0d. For the Bessel function, we used integral
representations

J0szd = Re
− 2i

p
E

0

`

duBeiz+coshuB s58d

for the noncompact variable and

J0szd =
1

p
E

0

p

duFeiz cosuF, s59d

for the compact variable.J1 is given byJ1szd=−J08szd. Inte-
grating the variablet, we obtain Eq.(32).

The asymptotic form atz@1 is given by Eq.(44). This
cannot be obtained by standard perturbation theory which
gives only nonoscillating terms, the first and third terms in
Eq. (44). The oscillating second term can be obtained by
taking into account two saddle points for integrals ofuB,F in
Eq. (57). In addition to the “standard saddle point”suB,uFd
=s0,0d we have another “supersymmetry-breaking saddle
point” s0,pd. We note that the point(0,0) corresponds toQ
=Sz and s0,pd to Q=−kSz. This is precisely the idea of the
calculation in Ref. [9]. Taking into account fluctuations
around these points, we can obtain the desired result.

In fact this idea is used to find the correct asymptotics of
the Bessel function. The noncompact representation(58) is
used foruB and has the saddle pointuB=0. The compact
representation(59) for uF has the saddle pointsuF=0,p.
Expanding around these saddle points, respectively, we have

J0szd ,Î 1

pz
FS1 −

1

8z
+ ¯Dcosz+ S1 +

1

8z
+ ¯DsinzG .

s60d

It is interesting to note that the expansion around a single
saddle point is required for the noncompact representation
(58) and two points for the compact representation(59).
When Eq.(58) is deformed to Eq.(59) the single pointuB
=0 splits into the two pointsuF=0,p. It can be shown by
considering the deformation of the integral contour used in
Ref. [23]. We find

− 2i

p
E

0

`

du eiz+coshu =
2

p
E

0

p/2

du eiz cosu −
2i

p
E

0

`

du e−z sinh u.

s61d

This representation is known as the Hankel functionH0=J0
+ iN0. Taking the real part, we obtain

J0szd =
1

p
E

0

p/2

du eiz cosu +
1

p
E

0

p/2

du e−iz cosu. s62d

This expression is reduced to Eq.(59) by changing the vari-
able u→p−u in the second term. Thus the point 0 in the
second term is changed top. Note that the real part of the
integral is taken in the noncompact representation(58),
which gives the second term.

This method, taking into account a set of nontrivial saddle
points, is the main idea of the nonperturbative calculation. It
produces the exact result for the unitary class and the

asymptotic ones for the orthogonal and symplectic classes
[9]. It has been used even for the replica[26] and Keldysh
[27] s models. For chiral symmetric systems at the ergodic
limit, a similar technique has been used in Ref.[28] to find
the asymptotic result(44). In the following, we examine how
the effect of nonzero modes is incorporated into the
asymptotic form.

3. Integration of the zero mode

We write theQ matrix as Eq.(31) and use the parametri-

zations (28) and (50) for Q̃, and (55) for T. It is slightly
modified as

Qsxd = UT0ŪQ̃sxdUT̄0Ū → UT0Q̃sxdT̄0Ū. s63d

As a result,F1 becomes independent of the Grassmann vari-
ables of the zero mode. The preexponential term in Eq.(25)
is written explicitly using the Grassmann variables as

strkSzQsxd → strkSzT0Q̃sxdT̄0 + 2jh strSzT0Q̃sxdT̄0.

s64d

We neglected contributions that vanish after integrations
over j andh. The first term does not include those variables
and we can putT0=1 for the integrations. The second term is
also easily integrated out and we thus havekrsedl=krsedl1

+krsedl2 where

krsedl1 =
1

4DV
ReE DQ̃JfQ̃gFE strkSzQ̃Ge−F1fQ̃g,

krsedl2 =
1

2pD
ReE

0

`

duBE
−p

p

duF

3
scoshuBcosuF − 1 + i sinhuBsinuFd

scoshuB − cosuFd2

3Ise,uB,uFd,

Ise,uB,uFd = − i
]

] z
E DQ̃JfQ̃gexpF−

pD

4DV
E strs¹Q̃d2

−
ipe

2DV
E strSzT0Q̃T̄0G . s65d

krsedl1 gives the perturbative result(35) without the zero-
mode contribution and is equal to the inverse of the renor-

malized mean level spacing 1/D̃. krsedl2 includes the ergodic
result and is nonperturbative.

We note that the JacobianJfQ̃g contribution exists in the
present parametrization(31). It depends on the nonzero
modes only and can be written as

JfQ̃g = expF 1

4V
E sstr PSxd2 + OsP4dG . s66d

This contribution changes the renormalized mean level spac-
ing slightly and the scaled DOSr1szd is not changed in our
approximation. For this reason, we neglect this contribution
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in the present section. It is treated in Sec. IV when we dis-
cuss the DOS renormalization.

Let us turn to the calculation ofkrsedl2. The kinetic term
in F1 does not include the zero mode and is expanded in
powers ofP. The second term inF1 (and the preexponential
term) is expanded as

−
1

2
E strSzT0Q̃T̄0 = VscoshuB − cosuFd

+E fstrskFP2dcosuF

+ strskBP2dcoshuBg

−E fstrskFSxP
3dsinuF

− istrskBSxP
3dsinhuBg + ¯ ,

s67d

wherekF,B=s1±kd /2. In the following calculation we neglect
odd terms in theP matrix. Their contributions give 1/g3

corrections at most. Another reason to neglect them is that

they involve a factor sinû which goes to zero at the saddle
points uF=0, p and uB=0. Using this approximation, we
find the simplified expression

Ise,uB,uFd , − i
]

] z
eizslB−lFdkeizlBAB+izlFAFlkin,

AF,BfQ̃g = −
1

2V
E strkF,BSzfQ̃ − Szg,

k¯lkin =E DQ̃s¯de−Fkin,

Fkin =
pD

4DV
E strs¹Q̃d2, s68d

where z=pe /D , lB=coshuB, and lF=cosuF. AF,BfQ̃g in-
clude even powers inP. Introducing the auxiliary variablet,
we obtain

krsedl2 =
1

pD
ImE

z

`

dtE
0

`

duBE
0

p

duFslBlF − 1deit+slB−lFdF1

− st − zd
]

] z
GkeizlBAB+izlFAFlkin. s69d

Now the problem is how integrations of the variablesuB,F
are performed. They can be done by noting that the variable
t in the exponential is shifted tot++zAB or t−zAF compared
with the ergodic limit. For the fermion partuF, there is no
convergence problem and the Bessel function is derived. It is
also the case for the boson partuB since the convergence
problem does not arise for the part including Grassmann
variables and the other parts are real. The only difference is
that we cannot take the real part for the expression after
integration ofuB since the argumentt+zAB includes Grass-

mann variables. We get the Hankel functionH0=J0+ iN0 in-
stead of the Bessel functionJ0 [see Eq.(61)]. However, the
imaginary partiN0 does not contribute to the final result
since the functionalAB is reduced to a real function in the
end. This is valid in our approximation keeping contributions
up to second order in 1/g. Thus we neglect the imaginary
part and obtain

krsedl2 ,
p

2D
Re

d

dz
E

z

`

dtst − zdkJ0st + zABdJ0st − zAFd − J1st

+ zABdJ1st − zAFdlkin. s70d

The ergodic limit g=` can be found easily by putting

AF,BfQ̃g=0. We note again that this equation was obtained by
neglecting contributions including sinuF or sinhuB. This ap-
proximation is valid up to second order in 1/g. It still re-
mains to carry out integrations over the nonzero modes. In
the following we consider two limiting cases.

4. KM’s domain „z™g…

The casez!g can be considered using KM’s method[8].
For chiral systems, it was considered in Ref.[14]. In our
method, the Bessel functions in Eq.(70) are expanded in
powers ofzAF,B,Osz/gd to find

krsedl2 ,
1

D
ReF1 +

1

2
kAB − AFlkin

d

dz
z+

1

8
ksAB

− AFd2lkin
d

dz
z2 d

dz
Gfr1

s0dszd − 1g. s71d

Combining with the perturbative contribution

krsedl1 ,
1

D
ReF1 +

1

2
kAB − AFlkin + ¯G , s72d

we find

krsedl ,
1

D
ReF1 +

1

2
kAB − AFlkin

d

dz
z+

1

8
ksAB

− AFd2lkin
d

dz
z2 d

dz
Gr1

s0dszd. s73d

Up to here the DOS is scaled in terms of the bare mean level
spacingD. We introduce the renormalized mean level spac-

ing as 1/D̃=krsedl1. Defining the energy variable asz̃

=pe / D̃, we use the transformation formula for a function
fszd

fszd = F1 +S D̃

D
− 1Dz̃

d

dz̃
+ ¯G fsz̃d

, F1 −
1

2
kAB − AFlkinz̃

d

dz̃
+ ¯G fsz̃d. s74d

It is applied to Eq.(73) to find
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r1sz̃d = D̃krse = D̃z̃/pdl

, ReF1 +
1

8
kksAB − AFd2llkin

d

dz̃
z̃2 d

dz̃
Gr1

s0dsz̃d,

s75d

where

kksAB − AFd2llkin = ksAB − AFd2lkin − kAB − AFlkin
2 ,

ad

g2 .

s76d

This is obtained by expandingQ̃ in powers ofP and using
the contraction(A6) with e=0. ad is momentum summation
and is given by Eq.(39). Thus we obtain Eq.(38).

5. AA’s domain„1™z…

In the limit 1!z, the asymptotic form of the Bessel func-
tion (60) is used to write

krsedl2 ,
1

D
Re

d

dz
E

z

`

dtF−
t − z

4t3
keizsAB+AFdlkin

− i
t − z

t
ke2it+izsAB−AFdlkinG

,
1

D
ReF 1

8z2Dsz,1,1d −
1

2z
e2izDsz,1,− 1dG ,

s77d

where

Dsz,lB,lFd =E DQ̃e−Fsz,lB,lFd,

Fsz,lB,lFd = Fkin +
izlF

2V
E strkFSzsQ̃ − Szd

+
izlB

2V
E strkBSzsQ̃ − Szd. s78d

Fsz,1 ,1d=F1 does not break supersymmetry, which means it
does not include the supermatrixk=diags1,−1d. As a result
we obtain Dsz,1 ,1d=1. On the other hand,Fsz,1 ,−1d
breaks supersymmetry and the functionDsz,1 ,−1d is not
normalized to unity. It is calculated asDsz,1 ,−1d,Dszd,
where the spectral determinantDszd is given by Eq.(42). We
used the approximation of keeping second order inP for
Fsz,1 ,−1d. We refer to Appendix A for details(see also the
following paragraph).

Equation(77) is rewritten in terms of the energy variable

scaled by the renormalized mean level spacingz̃=pe / D̃. We

use the formula(74) and the difference betweenD and D̃ is
expressed by the diffusion propagatorPsq,ed. It represents
the self-interacting diffusion bubble and should be canceled
out. Actually we have contributions from the function
Dsz,1 ,−1d by keeping higher-order terms inP. We find

Dsz,1,− 1d , E DQ̃e−Fs2dsz,1,−1df1 − Fs4dsz,1,− 1dg

= DszdF1 + iz ReSo
qÞ0

Psq,edD2G , s79d

whereFsnd denotes thenth order part in the expansion. The
second term cancels with a contribution coming from the
transformation (74). Noting Dsz,gd=Dsz̃,g̃d, where g

=pEc/D andg̃=pEc/ D̃, we finally obtain the result Eq.(41)
for 1!z.

C. Comparison with the KM method

The obtained result(38) for the KM domain differs
slightly from Eq. (21) in Ref. [14] by the presence of mo-
mentum integration of the propagatoroqÞ0Psq,0d. As we
can understand from Eq.(37), the difference comes from the
introduction of the renormalized mean level spacing[Eq.
(73) coincides with Eq.(21) in Ref. [14]]. It is expressed as
a self-interacting diffusion diagram[it can be understood by
noting the coordinate representationoqPsqd=Psx,xd] and is
renormalized to the mean level spacing. In order to make this
difference clear, we repeat the calculation using KM’s
method considered in Ref.[14]. In this method, the nonzero
modes are integrated out while keeping the zero mode vari-
ables. It allows us to obtain the renormalized effective zero-
mode action and is useful to understand how we can intro-
duce the renormalized mean level spacing.

We start from the functional for the DOS with the source
term

F =
pD

4DV
E strf¹Qsxdg2 +

ipe

2DV
E strQsxdSz

+
ipJ

2DV
E strkQsxdSz. s80d

The Q-matrix parametrization(31) is substituted and the

nonzero modesQ̃ are expanded inP as Eq. (28). In our
approximation, keeping second order in 1/g, the expansion
is performed up to fourth order inP. The functionalF con-
sists of four parts:

F = F0 + F̃ + FI + FJ. s81d

F0 is the zero-mode partF0=FfQ=TSzT̄g , F̃ the nonzero-

mode partF̃=FfQ̃g , FI the mixing part, andFJ the source
term. They are expanded inP as

F̃ = F̃s2d + F̃s4d + ¯ ,

FI = FI
s2d + FI

s3d + FI
s4d + ¯ ,

FJ = FJ
s0d + FJ

s2d + FJ
s3d + FJ

s4d + ¯ , s82d

whereFsnd denotes thenth order part inP.
The effective functional is obtained by integrating the

nonzero modes. We defineFeff as
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e−Feff =E DQ̃e−F = e−F0ke−F̃s4d+¯−FI −FJlF̃s2d, s83d

where the average is performed with respect toF̃s2d. We use
the contraction rules derived in Appendix A. Up to second
order in the cumulant expansion,

Feff , F0 + FJ
s0d + kFI

s4dl + kFJ
s4dl −

1

2
kkFI

s2d2ll − kkFI
s2dFJ

s2dll

=
ipe

2D F1 +
1

2So
qÞ0

Psq,edD2GstrQSz

+
p2e2

8D2 So
qÞ0

P2sq,edDsstrQSzd2

+
ipJ

2D F1 +
1

2So
qÞ0

Psq,edD2GstrkSzQ

+
p2eJ

4D2 So
qÞ0

P2sq,edDstrQSzstrkSzQ. s84d

Since momentum summations potentially involve diver-
gence, this expansion is somewhat cumbersome. This can be
clearly seen by considering the KM domainz!g. Then the
energye in the propagator is neglected in our approximation
Psq,ed,Psq,0d and the effective functional can be written
as

Feff ,
ipe

2D
F1 +

ad
s1d2

8g2 GstrQSz +
p2e2

8D2

ad

4g2sstrQSzd2

+
ipJ

2D
F1 +

ad
s1d2

8g2 GstrkSzQ +
p2eJ

4D2

ad

4g2strQSzstrkSzQ,

s85d

wheread is given by Eq.(39) and

ad
s1d =

1

p2 o
niù0,n2Þ0

1

n2 . s86d

This summation is divergent atdù2 and we need some
regularization. Fortunately, and as it should be, the quantity
ad

s1d can be renormalized to the mean level spacing by defin-
ing the renormalized spacing

1

D̃
=

1

D
F1 +

ad
s1d2

8g2 + Os1/g3dG . s87d

This is nothing but the expression(37) at the KM domain.
ad

s1d corrections come from the averagekQsxdl. On the other
hand the second and fourth terms in Eq.(85) come from the
contractionkkQsxdQsydll and cannot be renormalized toD.
They give the corrections obtained in Eq.(38).

Thus the KM method makes the problem of the renormal-
ization transparent. The idea of integrating out fast variables
matches the philosophy of the renormalization. Nevertheless,
we did not use this method for the reason that it is not con-
venient for calculations in the AA domainz@1. Integrations
of zero-mode variables naturally bring contributions from

nontrivial saddle points, which is an important idea for non-
perturbative calculations.

D. Two-level correlation function

Now we turn to the calculation of the TLCF(26). Q is an
838 supermatrix and the explicit parametrization is differ-
ent from the previous case.

For the standard perturbative calculation, we use the ex-
pansion Eq.(28). The explicit parameterization of theP ma-
trix is given by

P = S0 t

t 0
D, t = S t1 t12

t12 t2
D ,

t1 = Sa1 s1

r1 ib1
D, t2 = Sa2 s2

r2 ib2
D ,

t12 = S c ih

j* id
D, t21 = S c* j

ih* id*
D . s88d

a1,2, b1,2 are real variables,c, d complex variables, and the
greek symbols denote Grassmann variables. As the explicit
parametrization implies,t1,2 represent the “chiral” part and
t12,21the “unitary” part. Starting from the expression(27), we
have

Wse1,e2d =
1

D2 E DQe−F2
s0dsz1,z1,z2,z2d+¯

3F1 −
1

2V
E

x

strkL1P
2sxd + ¯G

3F1 −
1

2V
E

y

strkL2P
2syd + ¯G . s89d

F2
s2dsz1,z1,z2,z2d given by Eq.(A11) is second order inP and

is the base of the perturbative expansion. The contraction
rule given by Eq.(A14) is used to evaluate the above expres-
sion. The leading order contribution to the connected part
comes from the contraction

kstrkL1P
2sxdstrkL2P

2sydl = 4P2sx − y,se1 + e2d/2d.

s90d

Thus we obtain the result(36) which is valid atg@1 and
z1,2=pe1,2/D@1.

The ergodic limitg→` was considered in Ref.[23]. The
Q matrix is parametrized as

Q = TSzT̄, T = TchTu. s91d

Tch is the chiral part

Tch = UchTch
s0dŪch,
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Tch
s0d =1

cos
û1

2
0 − i sin

û1

2
0

0 cos
û2

2
0 − i sin

û2

2

− i sin
û1

2
0 cos

û1

2
0

0 − i sin
û2

2
0 cos

û2

2

2 ,

û = Sû1 0

0 û2

D =1
u1F 0 0 0

0 iu1B 0 0

0 0 u2F 0

0 0 0 iu2B

2 ,

Uch =1
uch1 0 0 0

0 uch2 0 0

0 0 uch1 0

0 0 0 uch2

2, uch1,2= expS 0 s1,2

r1,2 0
D ,

s92d

andTu the unitary part

Tu = UuTu
s0dŪu,

Tu
s0d

=1
cos

V̂

2
0 0 − ieiŵsin

V̂

2

0 cos
V̂

2
− ie−iŵsin

V̂

2
0

0 − ieiŵsin
V̂

2
cos

V̂

2
0

− ie−iŵsin
V̂

2
0 0 cos

V̂

2

2 ,

V̂ = SVF 0

0 iVB
D, ŵ = SwF 0

0 wB
D ,

Uu =1
uu1 0 0 0

0 uu2 0 0

0 0 uu1 0

0 0 0 uu2

2 ,

uu1 = expS 0 j

− j* 0
D, uu2 = expS 0 ih

− ih* 0
D . s93d

s , r , j, and h are Grassmann variables. The integration
ranges of the real variablesu , V, andw are chosen properly
according to the compact or noncompact parametrization
[23]. The measure is given by

DQ = du1Bdu1Fds1dr1
1

4p

coshu1Bcosu1F − 1

scoshu1B − cosu1Fd2du2B

3du2Fds2dr2
1

4p

coshu2Bcosu2F − 1

scoshu2B − cosu2Fd2

3dVBdVF
dwB

2p

dwF

2p
dj dj * dh *

3dh
sinhVBsinVF

scoshVB − cosVFd2

4 coshVBcosVF

scoshVB + cosVFd2 .

s94d

Using this parametrization, after a laborious calculation, we
can obtain Eq.(33) (see Ref.[23] for the details).

The nonperturbative calculation using the parametrization
(31) can be done in the same way as that of the DOS. First
we integrate the zero-mode variables. The details are pre-
sented in Appendix B, and we find forW

W= W1 + W2,

W1 ,
1

D2KHF1 +
1

2
sAB1 − AF1dGeiz1sA−1+A+1d

+
p

2

]

] z1
E

z1

`

dt1st1 − z1dfJ0st1 + z1AB1dJ0st1 − z1AF1d

− J1st1 + z1AB1dJ1st1 − z1AF1dgJHF1 +
1

2
sAB2

− AF2dGeiz2sAB2+AF2d +
p

2

]

] z2
E

z2

`

dt2st2 − z2d

3fJ0st2 + z2AB2dJ0st2 − z2AF2d

− J1st2 + z2AB2dJ1st2 − z2AF2dgJL
kin

,

W2 ,
1

D2 E ds1ds2
4s1s2

ss1
2 − s2

2d2Isz,sd,

Isz,sd =
p2

4
Kz1z2ss1 − s2 + C1dss1 + s2 − D1dJ0Sz1s1

+ z1
C1 − D1

2
DJ0Sz1s2 − z1

C1 + D1

2
Dss1 − s2 + C2dss1

+ s2 − D2dJ0Sz2s1 + z2
C2 − D2

2
DJ0Sz2s2

− z2
C2 + D2

2
DL

kin
, s95d

wheres1=coshVB, s2=cosVF, and

AB1,2= −
1

2V
E strkBL1,2SzsQ̃ − Szd,

AF1,2= −
1

2V
E strkFL1,2SzsQ̃ − Szd,
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C1,2=
1

2
fs1AB + s2AF ± sABL + AFLdg,

D1,2=
1

2
f− s1AB + s2AF ± s− ABL + AFLdg,

AF,B = AF,B1 + AF,B2,

AF,BL = AF,B1 − AF,B2. s96d

We neglected odd terms inP as before.W1 includes the
perturbative contributions(36) and W2 includes the ergodic
result (33).

In the KM domainz1,2!g, the expansion inzA can be
used. The integrations of the nonzero modes are calculated
up to second order in 1/g. Introducing the renormalized
mean level spacing we have

krse1drse2dl ,
1

D̃2
F1 +

ad

4g2 +
ad

2g2Sz1
]

] z1
+ z2

]

] z2
D

+
ad

8g2Sz1
2 ]2

] z1
+ 2z1z2

]

] z1

]

] z2
+ z2

2 ]2

] z2
DG

3fr1
s0dsz1dr1

s0dsz2d − K2sz1,z2dg, s97d

wherez1,2=pe1,2/ D̃, andD̃ is given by Eq.(87). Subtracting
the disconnected part, we derive Eq.(40).

The AA domain 1!z1,2, 1!g is considered using the
asymptotic form of the Bessel function(60). The details are
presented in Appendix B. FromW1 we obtain the first part

kkrse1drse2dll1 ,
1

D2F1

2
Reo

q2Þ0

sP+
2 + P−

2d

+
sin 2z1

2z1
D1Im o

q2Þ0

sP+ + P−d

+
sin 2z2

2z2
D2Im o

q2Þ0

sP+ − P−d

+
cos 2sz1 + z2d

8z1z2
D1D2sD+

2 + D−
−2 − 1d

+
cos 2sz1 − z2d

8z1z2
D1D2sD−

2D+
−2 − 1dG ,

s98d

where D1,2=Dsz1,2d , D±=D(sz1±z2d /2), and P±=P(q,se1

+e2d /2). The first term represents the purely perturbative
contribution. The second connected partW2 is calculated in
the same way. We obtain

kkrse1drse2dll2 , −
1

D2ReH1 − e2isz1−z2dD1D2D−
2D+

−2

2sz1 − z2d2

+
s1 + e2isz1+z2dD1D2D+

2D−
−2d

2sz1 + z2d2

+
ise2iz1D1 − e2iz2D2d

z1
2 − z2

2 J . s99d

The derived expressions are written in terms of the un-
renormalized quantityD and we must carry out rescaling in

terms ofD̃. Additional contributions coming from the rescal-
ing should cancel out with terms we did not show explicitly
here. This situation is the same as the DOS case and we
finally arrive at Eq.(43).

IV. THE DOUBLE-TRACE TERM AND THE DOS
RENORMALIZATION

In the previous section, we neglected the second term in
Eqs.(16) and (19). This double-trace term includes nonzero
modes only and changes the perturbative result. It appears
only in systems with chiral symmetry and we therefore con-
centrate on the DOS.

At second order inP, we have instead of Eq.(51)

F1
s0d =

pD

DV
E strs¹Pd2 +

pD1

4DV
E sstr ¹ PSxd2

−
ipe

DV
E str P2. s100d

The presence of the second term modifies the contraction
rule as Eq.(A9). In this case perturbation theory is formu-
lated by expansions inP, Eq. (29), and

P2sq,ed =
pD1q

2

D
P2sq,ed. s101d

The corresponding expansion parameters are 1/g~1/D and
g1/g2~D1/D2.

The perturbative expansion gives the DOS

ksedl =
1

D
ReF1 + o

q

P2sq,ed +
1

2Soq

Psq,edD2

+
1

2Soq

P2sq,edD2
+ ¯G . s102d

The new propagatorP2 contributes to the DOS at one-loop
order. The renormalized mean level spacing is defined as the
inverse of Eq.(102) excluding zero-mode contributions. Ac-
tually this result was derived by Gade using the renormaliza-
tion group method[17]. In our model(16), following the
calculation in Ref.[6], we can obtain the same renormaliza-
tion group equations at one-loop order as
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bb = −
db

dm
= eb, bc = −

dc

dm
= ec + c2, z =

b2

c
,

s103d

whereb,1/g and c,1/g. We usede expansion,e=d−2,
andm is the renormalization scale.bb,c are the beta functions
for b and c. z is the zeta function for the wave function
renormalization and corresponds to the result in Eq.(102).
These equations imply a divergence of the DOS and delocal-
ization of eigenstates in two dimensions. Thus the presence
of the double-trace term changes the behavior of the DOS
significantly. We note that the renormalization procedure
produces the double-trace term even if we start the analysis
from a model without that term. The quantum effect in two
dimensions increases the coupling constantc.

We consider the scaled DOSr1szd to examine how the
double-trace term contributes to the result. The perturbative
result (102) is renormalized to the mean level spacing. In a
similar way as the calculation in the previous section we find
in the KM domainz!g

r1szd , H1 +F ad

8g2 +
ad

16
Sg1

g2D2GS2z
d

dz
+ z2 d2

dz2DJr1
s0dszd.

s104d

In the AA domain 1!z, the spectral determinant is modified
as Eq.(A10). Subtracting the renormalization effect, we ob-
tain

Dszd , p
qù0,q2Þ0

sDq2d2

sDq2d2 + e2F1 − 8z2 o
qù0,q2Þ0

uP2sq,edu2G ,

s105d

which is consistent with Eq.(104).
Finally we mention the Jacobian contribution in Eq.(66).

It includes a term second order inP and changes the con-
traction rules. Since this term is similar to the last term in Eq.
(100) it can be easily incorporated into the contraction rules
by the replacement

P2sq,ed → P2sq,ed − P2sq,ed. s106d

Thus this Jacobian contribution is always subleading com-
pared to the propagatorP2. We also note that this contributes

only to D̃ and not to the scaled DOSr1szd in our approxima-
tion.

V. DISCUSSION AND CONCLUSIONS

We have studied disordered systems with chiral unitary
symmetry. Using a chiral symmetric random matrix model
we derived the nonlinears models(16) and (19). We dem-
onstrated that they are equivalent to related chiral symmetric
models. Using thes models, we calculated the level corre-
lation functions. We exploited the nonperturbative methods
developed by Kravtsov and Mirlin and Andreev and Alt-
shuler for the traditional classes.

The equivalence of the models shows the universality of
disordered systems. Our deriveds models are applicable to

models treated in Refs.[17,18,20]. The double-trace term
was not derived in Ref.[20]. This is because the massive
mode integration was not considered carefully.

For the calculation of the DOS and TLCF, we stressed the
need for the renormalization of the mean level spacing. This
renormalization is absent in traditional nonchiral systems.
After separating the renormalization effect, we found the re-
sults (38) and (40) in the KM domain and(41) and (43) in
the AA domain. It is interesting to note that the results in the
AA domain are expressed using the spectral determinant. It
contributes to oscillating terms only, in a similar way as for
the traditional classes. Thus we conclude that the singularity
of the form factor at the Heisenberg time is washed out due
to finite-g effects[9].

Our formulation of the perturbative and nonperturbative
calculations can be useful not only for the level correlation
functions but also for the conductance and other quantities.
In the present work we concentrated on the level correlation
functions. In Ref.[20], the same quantities were calculated
perturbatively. The different result obtained there is due to
another parametrization of theQ matrix. Additional contri-
butions coming from the integration measure would give the
correct result. In Ref.[14], the DOS in the KM domain was
calculated from the model derived in Ref.[20]. The result
was scaled in terms of the bare mean level spacingD, and the

renormalized mean level spacingD̃ was not introduced. This
leads us to a different conclusion on level statistics as we
mention below.

Let us discuss the importance of introducing the renor-
malized mean level spacing. There are numerous works on
the behavior of the DOS at the origine=0. The main ques-
tion is whether the DOS diverges or not, and analytically it
has been considered using perturbation theory at weak disor-
derg@1. On the other hand, chiral RMT, which corresponds
to the model atg=`, predicts the vanishing of the DOS at
the originz=0. This is not a contradiction and indicates the
importance of scaling. The macroscopic behavior is deter-

mined by the nonzero modes and a divergence of 1/D̃ was
reported in Ref.[17]. The zero mode has nothing to do with
this behavior and determines the universal behavior at the
microscopic scale. It can be seen by scaling the energy vari-
ablee in terms of the mean level spacing.

Generally speaking, the behavior at the macroscopic scale
depends on the model. From a field theoretical point of view,
the divergence can be renormalized to the mean level spac-
ing and a definite conclusion as to whether it is a real diver-
gence or not can be obtained by referring to other approaches
such as numerical simulations. Our result relies on perturba-
tion theory and the divergence may be cut off somewhere
before the origin. This crossover to the universal microscopic
domain is highly nonperturbative. Since a high resolution is
required, it may be hard to see such a crossover numerically.

From the viewpoint of level statistics, the DOS must be
scaled(renormalized) to unity at all energies to find the uni-
versality. This unfolding procedure cannot be applied to the
present chiral case because the DOS itself has universal fine
structure(oscillations due to level repulsion) at the origin.
For this reason, we useD, the (inverse) DOS atz=` se=0d,
for scaling in the ergodic regime. It is modified by finite-g
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effects and we useD̃ to see the microscopic domain closely.
Thus using the renormalized mean level spacing, we can

separate problems at both scales. The effects of nonzero
modes(finite-g effect) cannot be scaled out completely in the
microscopic domain and deviations from the universal be-
havior are obtained as we have shown in the present work.
Such an example can be found in Ref.[16]. The generalized
random matrix model was used there and it was found that
the quantityD̃ is different from our result. However, after
scaling in terms of the nonuniversal quantityD̃, we can find
complete agreement up to finite-g corrections. This demon-
stration of “universal deviation” justifies the introduction
of D̃.

The double-trace term contribution is small at the classi-
cal level because the coupling constant is small compared
with that in the diffusion propagator. However, quantum ef-
fects affect this coupling and the contribution becomes im-
portant in some cases. It significantly affects the DOS renor-
malization and a diverging DOS was found in Ref.[17].
Concerning level statistics, this term modifies the spectral
determinant as Eq.(A10).

Our calculation is only for the chiral unitary class. The
other chiral classes, chiral orthogonal and symplectic, can be
calculated in the same way. The problem is that the proper
parametrization of the zero mode has not been found. How-
ever the KM domain can be considered without knowing the
zero-mode parametrization as was done in Ref.[14]. The
obtained result is valid only at first order in 1/g. Repeating
the same calculation up to the next order and introducing the
renormalized mean level spacing, we found the same form as
Eq. (38). The coefficient of the second term in Eq.(38) is
changed but with the same sign for all the classes. This result
also holds for the TLCF(40). We thus obtain the same con-
clusion as KM, namely, the weakening of level repulsion
[this can be seen, e.g., in Eq.(48)]. The authors in Ref.[14]
drew a different conclusion by looking at the first order cor-
rection to the mean level spacing. It is renormalized to the
mean level spacing and should be applied to the DOS behav-
ior and not to level repulsion.

As an interesting application, we mention a related work
in Ref. [29]. For traditional nonchiral systems, the authors in
Ref. [13] pointed out that the AA result is related to the
Calogero-Sutherland model at finite temperature. It is shown
in Ref. [30] that this model is equal to the generalized ran-
dom matrix model proposed in Ref.[31]. In this problem the
nonlinears model is modified due to power-law correlations
of random matrices[15] and the diffusion propagator and
spectral determinant are modified. As a result agreement with
the result in Ref.[31] was found and a conjecture to more
general cases was made. We expect this holds also for chiral
systems and the result is presented in Ref.[16].

Another future problem is the wave function statistics.
For traditional classes, it was considered in Ref.[32] using
the KM method. It will be interesting to see how this result is
modified in the chiral symmetric case.
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APPENDIX A: CONTRACTION RULES

1. Calculation for F1

Consider the functional

F1
s2d =

pD

DV
E strs¹Pd2 −

iz

V
lFE strkFP2 −

iz

V
lBE strkBP2,

sA1d

wherekF,B=s1±kd /2 andz=pe /D. The P matrix is a 434
supermatrix including nonzero modes and is given by Eq.
(50). Since this functional breaks supersymmetry forlF

ÞlB, the functionD1sz,lB,lFd=eDQ̃ exps−F1
s2dd is not nor-

malized to unity. We calculate this function and derive the
contraction rules.

Using the explicit parametrization(50), we writeF1
s2d as

F1
s2d = o

qÞ0

s− r s a bds− qdG−11
s

r

a

b
2sqd

; o
qÞ0

c̄sqdG−1csqd,

G = diagfPsq,el+d,Psq,el+d,Psq,elFd,Psq,elBdg,

sA2d

wherel+=slB+lFd /2 and the diffusion propagator is given
by Eq. (29). Then the functional integral is given by

D1sz,lB,lFd =E Dsc̄,cde−F1
s2d

= p
q2Þ0

FPsq,elBdPsq,elFd
P2sq,el+d G1/2

= p
qù0,q2Þ0

sDq2 − iel+d2

sDq2 − ielBdsDq2 − ielFd
,

sA3d

E Dsc̄,cdcc̄e−F1
s2d

=
1

2
D1sz,lB,lFdG. sA4d

Sincecsqd andcs−qd are not independent of each other, the
square root appears inD. We used the periodic boundary
condition andqi =2pni /L , ni is integer.

Using the result we obtain the contraction rules for the
matrix P as

kstrAPsxdBPsydl =
1

4 o
i,j=F,B

PSx − y,e
li + l j

2
DsstrkiA strkjB

− strkiASzstrkjBSz + strkiASxstrkjBSx

− strkiASystrkjBSyd,
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kstrAPsxdstrBPsydl =
1

4 o
i,j=F,B

PSx − y,e
li + l j

2
D

3 strskiAkjB − kiASzkjBSz

+ kiASxkjBSx − kiASykjBSyd,

sA5d

where A and B are arbitrary supermatrices andk¯l
=D1

−1sz,lB,lFdeDQ̃s¯dexps−F1
s2dd.

We are mainly interested in the casesslB,lFd=s1,1d and
s1,−1d. The first case(1, 1) corresponds to standard pertur-
bation theory. The free energy does not break supersymmetry
and we findDsz,1 ,1d=1 and

kstrAPsxdBPsydl =
1

4
Psx − y,edsstrA strB − strASzstrBSz

+ strASx strBSx − strASystrBSyd,

kstrAPsxdstrBPsydl =
1

4
Psx − y,edstrsAB− ASzBSz

+ ASxBSx − ASyBSyd. sA6d

In the cases1,−1d, supersymmetry is broken and this is used
for calculations in the AA domain 1!z. The functionD is
given by

D1sz,1,− 1d = p
qù0,q2Þ0

sDq2d2

sDq2d2 + e2

= p
nù0,n2Þ0

g2s4p2n2d2

g2s4p2n2d2 + z2 . sA7d

2. Effect of the double-trace term

We consider the effect of the double-trace term. The sec-
ond term of Eq.(100) is included in Eq.(A1). In this case,
the matrixG in Eq. (A2) is replaced by

Gsqd = diagsP+,P+,CPF,CPBd

−
pD1q

2

D
PFPBC1

0 0 0 0

0 0 0 0

0 0 1 − i

0 0 − i − 1
2 ,

PF,B,+ =
D

2p

1

Dq2 − ielF,B,+
,

C =
1

1 + spD1q
2/DdsPF − PBd

. sA8d

As a result,D and the contraction rules are modified in the
following way. The contraction forslB,lFd=s1,1d is ex-
pressed as

kstrAPsxdBPsydl =
1

4
Psx − y,edsstrA strB − strASzstrBSz

+ strASxstrBSx − strASystrBSyd

−
1

2
P2sx − y,edstrASxBSx,

kstrAPsxdstrBPsydl =
1

4
Psx − y,edstrsAB− ASzBSz

+ ASxBSx − ASyBSyd

−
1

2
P2sx − y,edstrASxstrBSx,

sA9d

where the propagatorP2 in momentum space is given by Eq.
(101). For slB,lFd=s1,−1d, Eq. (A7) is replaced by

D1sz,1,− 1d = p
qù0,q2Þ0

sDq2d2

sDq2d2 − ieD1q
2 + e2 . sA10d

3. Calculation for F2

Consider

F2
s2dsz1,z2,z3,z4d =

pD

DV
E strs¹Pd2 −

iz1

V
E strkFL1P

2

−
iz2

V
E strkBL1P

2 −
iz3

V
E strkFL2P

2

−
iz4

V
E strkBL2P

2, sA11d

whereL1,2=s1±Ld /2 andz1,2,3,4=pe1,2,3,4/D. The P matrix
is an 838 supermatrix and is parametrized as Eq.(88). This
case is considered in the same way as the case ofF1

s2d. We
neglect the double-trace term contribution for simplicity. The
result is expressed for the functional integral as

D2sz1,z2,z3,z4d =E DQ̃e−F2
s2dsz1,z2,z3,z4d

= Dchsz1,z2dDchsz3,z4dDusz1,z2,z3,z4d,

Dchsz1,z2d = p
qù0,q2Þ0

fDq2 − si/2dse1 + e2dg2

sDq2 − ie1dsDq2 − ie2d
,

Dusz1,z2,z3,z4d

= p
qù0,q2Þ0

Dq2 − si/2dse1 + e4d
Dq2 − si/2dse1 + e3d

Dq2 − si/2dse2 + e3d
Dq2 − si/2dse2 + e4d

.

sA12d

For example, D2s−z1,z1,z2,z2d=D1sz1d , D2sz1,z1,−z2,z2d
=D1sz2d, and D2s−z1,z1,−z2,z2d=D1sz1dD1sz2dD1

2fsz1

+z2d /2gD1
−2fsz1−z2d /2g. The contraction rule is given by
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kstrAPsxdBPsydl =
1

4 o
a,b=F,B

o
i,j=1,2

Pia jbsx − yd

3 sstrkaLiA strkbL jB

− strkaLiSzA strkbL jSzB

+ strkaLiSxA strkbL jSxB

− strkaLiSyA strkbL jSyBd,

kstrAPsxdstrBPsydl =
1

4 o
a,b=F,B

o
i,j=1,2

Pia jbsx − yd

3 strskaLiAkbL jB

− kaLiSzAkbL jSzB

+ kaLiSxAkbL jSxB

− kaLiSyAkbL jSyBd, sA13d

where Pia jbsxd=P(x,slia+l jbd /2), and l1F=e1, l1B

=e2, l2F=e3, l2B=e4. The case sz1,z2,z3,z4d
→ sz1,z1,z2,z2d corresponds to standard perturbation and we
find

kstrAPsxdBPsydl =
1

4 o
i,j=1,2

PSx − y,
ei + e j

2
DsstrAListrBL j

− strALiSzstrBL jSz

+ strALiSxstrBL jSx

− strALiSystrBL jSyd,

kstrAPsxdstrBPsydl =
1

4 o
i,j=1,2

PSx − y,
ei + e j

2
DstrsALiBL j

− ALiSzBL jSz + ALiSxBL jSx

− ALiSyBL jSyd. sA14d

APPENDIX B: CALCULATION OF THE TWO-LEVEL
CORRELATION FUNCTION

1. Zero-mode integration

In this section we derive Eq.(95) by integrating the zero-
mode variables of the nonperturbative parametrization(31).
As before, the parametrization is slightly modified as

Qsxd = UuTchTu
s0dQ̃sxdT̄u

s0dT̄chŪu, sB1d

to eliminate the Grassmann variables of the unitary part in
F2. For the preexponential term, dependence of the Grass-
mann variables onUu is explicitly written as

strkL1SzQsxdstrkL2SzQsxd

→ strkL1SzTchQ̃sxdT̄chstrkL2SzTchQ̃sxdT̄ch

− 4jj * hh * str L1SzTchTu
s0dQ̃sxdT̄u

s0dT̄ch

3strL2SzTchTu
s0dQ̃sxdT̄u

s0dT̄ch. sB2d

The neglected terms do not contribute to integration of the
Grassmann variables. The first term does not include the
Grassmann variablesj andh. We can setTu

s0d=1 and have

W1se1,e2d =
1

16D2V2 E DQFE
x

strkL1SzQsxdG
3FE

y

strkL2SzQsydGe−F2fQg, sB3d

whereQ=TchQ̃T̄ch. It still includes the zero-mode variables
of the chiral partTch. Since the chiral part parametrization is
the same as that of the DOS, the calculation can be done as
in Sec. III B. As a resultW1se1,e2d in Eq. (95) is obtained. It
includes a perturbative part and connected and disconnected
parts.

Next we consider the second contribution which includes
only the connected part. It is obtained by integrations ofj
andh as

W2se1,e2d =
1

D2 E ds1ds2
dwB

2p

dwF

2p

4s1s2

ss1
2 − s2

2d2Isz1,2,s1,2,wB,Fd,

Isz1,2,s1,2,wB,Fd = −
]

] z1

]

] z2
E DQ̃DQche

−FfQg, sB4d

where Qsxd=TchTu
s0dQ̃sxdT̄u

s0dT̄ch, Qch=TchSzT̄ch, and z1,2

=pe1,2/D. We examine strêSzQsxd to integrate out variables
in Qch. The expression is simplified if we apply the saddle-
point approximation we use in the following. At the saddle

point we have sinû=0 and sinV̂=0. This approximation
leads to the reduction

str êSzQsxd → e1str
cosV̂ + L

2
fcosû1 + scoshu1B

− cosu1Fdr1s1gSzQ̃sxd

+ e2str
cosV̂ − L

2
fcosû2 + scoshu2B

− cosu2Fdr2s2gSzQ̃sxd. sB5d

Again we stress that this approximation is justified at second
order in 1/g. Substituting this expression, we have

Isz,s,wd = −E DQ̃e−FkinI1sz1,sdI2sz2,sd, sB6d

NONLINEAR s MODEL APPROACH FOR LEVEL… PHYSICAL REVIEW E 70, 066147(2004)

066147-17



I i=1,2sz,sd =
]

] z
E DQchF1 −

iz

2V
E

x

str
cosV̂ ± L

2
scoshuiB

− cosuiFdrisiSzQ̃sxdGexpF−
iz

2V

3E
x

str
cosV̂ ± L

2
cosûiSzQ̃sxdG , sB7d

where Fkin is the kinetic part inF2. The variablew is not
included in the integrand in our approximation. Integrations
of the remaining zero-mode variables are carried out and we
find

I isz,sd = iss1 − s2 + CidHeizss1−s2d+izCi

+
1

4p
E duiBduiF

liBliF − 1

liB − liF
F1 + izSs1liB − s2liF

+
1

2
sCi − DidliB +

1

2
sCi + DidliFDGexpFizSs1liB

− s2liF +
1

2
sCi − DidliB +

1

2
sCi + DidliFDGJ

=
ipz

2
ss1 − s2 + Cidss1 + s2 − DidJ0Szs1

+ z
Ci − Di

2
DJ0Szs2 − z

Ci + Di

2
D , sB8d

whereliF =cosuiF andliB=coshuiB. This result yieldsW2 in
Eq. (95).

2. AA’s domain

We consider Eq.(95) in the AA domain 1!z1,2 using the
asymptotic form of the Bessel function(60). For W1,

W1se1,e2d ,
1

D2kff1sz1deiz1sAB1+AF1d + g1sz1de2iz1+iz1sAB1−AF1dg

3 ff2sz2deiz2sAB2+AF2d + g2sz2de2iz2+iz2sAB2−AF2dglkin

=
1

D2 E DQ̃fe−Fsz1,z1,z2,z2df1sz1df2sz2d

+ e2iz1−Fs−z1,z1,z2,z2dg1sz1dg2sz2d

+ e2iz2−Fsz1,z1,−z2,z2df1sz1dg2sz2d

+ e2isz1+z2d−Fs−z1,z1,−z2,z2dg1sz1dg2sz2dg, sB9d

where

f iszd = 1 +
1

8z2 +
1

2
sABi − AFid + ¯ ,

giszd = −
1

2z
+

i

8z2 + ¯ , sB10d

andF is the supersymmetry breaking functional

Fsz1,z2,z3,z4d =
pD

4DV
E strs¹Q̃d2 +

i

2V
E strsz1kF

+ z2kBdL1SzsQ̃ − Szd +
i

2V
E strsz3kF

+ z4kBdL2SzsQ̃ − Szd. sB11d

The conditionz1=z2 andz3=z4 recovers supersymmetry. As

before we expand the nonzero modesQ̃ in terms of theP
matrix and use the contraction rules derived in Appendix A.
The first term in Eq.(B9) does not break supersymmetry
fFsz1,z1,z2,z2d=F2g and is nothing but the purely perturba-
tive contribution. Its connected part gives the first term in
Eq. (98). The second(third) term in Eq.(B9) gives the sec-
ond (third) term in Eq.(98). For the leading order contribu-
tion, we use

E DQ̃e−Fs−z1,z1,z2,z2d , D1,

kstrkL2P
2lFs0ds−z1,z1,z2,z2d = − 2o

qÞ0
sP+ − P−

* d,

E DQ̃e−Fsz1,z1,−z2,z2d , D2,

kstrkL1P
2lFs0dsz1,z1,−z2,z2d = − 2o

qÞ0
sP+ − P−d. sB12d

For the last term in Eq.(B9), we have

E DQ̃e−Fs−z1,z1,−z2,z2d , D1D1D+
2D−

−2. sB13d

The disconnected part is included in this contribution and is
subtracted to give the fourth and fifth terms in Eq.(98).

The purely connected partW2 is calculated using the
asymptotic form of the Bessel function. We obtain

W2se1,e2d ,
1

4D2E
1

`

ds1E
0

1

ds2kheiz1fs1+ss1A−+A−
sLdd/2g−ip/4 + spdj

3heiz1fs2−ss2A++A+
sLdd/2g−ip/4 + spdj

3 heiz2fs1+ss1A−−A−
sLdd/2g−ip/4 + spdj

3heiz2fs2−ss2A+−A+
sLdd/2g−ip/4 + spdjlkin, sB14d

where spd denotes the complex conjugate of the preceding
term. Integrations ofs1,2 are evaluated to find the asymptotic
form
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W2se1,e2d , −
1

4D2 E DQ̃H 1

sz1 − z2d2fe−Fsz1,z1,−z2,−z2d − e2isz1−z2d−Fs−z1,z1,z2,−z2d + sz1,2→ − z1,2dg +
1

sz1 + z2d2fe−Fsz1,z1,z2,z2d

+ e2isz1+z2d−Fs−z1,z1,−z2,z2d + sz1,2→ − z1,2dg +
i

z1
2 − z2

2fe2iz1−Fs−z1,z1,z2,z2d + e2iz1−Fs−z1,z1,−z2,−z2d + e−2iz2−Fsz1,z1,z2,−z2d

+ e−2iz2−Fs−z1,−z1,z2,−z2d − sz1,2→ − z1,2dgJ . sB15d

Finally, keeping second order inP for the functionalF and using the formula(A12), we obtain the result(99).
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